Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(2): e13891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990596

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant pathogen that causes high morbidity and mortality in largemouth bass, leading to enormous economic losses for largemouth bass aquaculture in China. The aim of this study was to investigate the efficacy of four disinfectants (potassium permanganate, glutaraldehyde, trichloroisocyanuric acid and povidone iodine) on MSRV, to control the infection and transmission of MSRV in largemouth bass aquaculture. The disinfectants were tested at different concentrations (5, 25, 50, 100 and 500 mg/L) prepared with distilled water for 30 min contact time, and the viral nucleic acid was quantified using qPCR and the infectivity was tested by challenge experiment. Potassium permanganate at 5-500 mg/L, glutaraldehyde at 500 mg/L, trichloroisocyanuric acid at 50-500 mg/L and povidone iodine at 500 mg/L concentration could effectively decrease the virus nucleic acid, and the survival rate of largemouth bass juveniles after challenge experiment increased significantly from 3.7% ± 6.41% to 33.33 ± 11.11% - 100%. Moreover, the minimum effective time of 5 mg/L potassium permanganate was further studied at 2, 5, 10 and 20 min contact time. The viral nucleic acid decreased significantly at 5-20 min exposure time, and the survival rate increased significantly from 7.41% ± 6.41% to 77.78 ± 11.11% - 100%. The median lethal concentration (LC50 ) values of potassium permanganate were 10.64, 6.92 and 3.7 mg/L at 24, 48 and 96 h, respectively. Potassium permanganate could be used for the control of MSRV in the cultivation process; the recommended concentration is 5 mg/L and application time should be less than 24 h. The results could be applied to provide a method to control the infection and transmission of MSRV in water, and improve the health status of largemouth bass.


Assuntos
Bass , Desinfetantes , Doenças dos Peixes , Ácidos Nucleicos , Rhabdoviridae , Animais , Desinfetantes/farmacologia , Glutaral , Permanganato de Potássio , Povidona-Iodo , Doenças dos Peixes/prevenção & controle , Água
2.
Fish Shellfish Immunol ; 94: 889-895, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31546039

RESUMO

Short-term feed deprivation or fasting is commonly experienced by aquaculture fish species and may be caused by seasonal variations, production strategies, or diseases. To assess the effects of fasting on the resistance of Nile tilapia to Streptococcus agalactiae infection, vaccinated and unvaccinated fish were fasted for zero, one, three, and seven days prior to infection. The cortisol levels of both vaccinated and unvaccinated fish first decreased and then increased significantly as fasting time increased. Liver glycogen, triglycerides, and total cholesterol decreased significantly after seven days of fasting, but glucose content did not vary significantly between fish fasted for three and seven days. Hexokinase (HK) and pyruvate kinase (PK) activity levels were lowest after seven days of fasting, while phosphoenolpyruvate carboxykinase (PEPCK) activity levels varied in opposition to those of HK and PK. Serum superoxide dismutase (SOD) and catalase (CAT) activity levels first increased and then decreased as fasting time increased; SOD activity was highest after three days of fasting. Interleukin-1beta (IL-1ß) and IL-6 mRNA expression levels first increased and then decreased significantly, peaking after three days of fasting. However, suppressor of cytokine signaling-1 (SOCS-1) mRNA expression levels were in opposition to those of IL-1ß and IL-6. Specific antibody levels did not vary significantly among unvaccinated fish fasted for different periods. Although specific antibody level first increased and then decreased in the vaccinated fish as fasting duration increased, there were no significant differences in the survival rates of fasted vaccinated fish after challenge with S. agalactiae. The final survival rates of vaccinated fish fasted for zero, one, three, and seven days were 86.67 ±â€¯5.44%, 80.00 ±â€¯3.14%, 88.89 ±â€¯6.28%, and 84.44 ±â€¯8.32%, respectively. Among the unvaccinated fish, the survival rate was highest (35.56 ±â€¯3.14%) in the fish fasted for three days and lowest (6.67 ±â€¯3.14%) in the fish fasted for seven days. Therefore, our results indicated that short-term fasting (three days) prior to an infection might increase the resistance of unvaccinated Nile tilapia to S. agalactiae.


Assuntos
Ciclídeos/imunologia , Resistência à Doença/fisiologia , Doenças dos Peixes/imunologia , Privação de Alimentos/fisiologia , Animais , Masculino , Distribuição Aleatória , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia
3.
Fish Shellfish Immunol ; 82: 522-530, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30118846

RESUMO

To effectively increase production and improve economic returns, the co-culture of Nile tilapia (Oreochromis niloticus) and marine shrimp has been adopted in many countries, including China. Although O. niloticus is an euryhaline fish that can tolerate elevated salinities and even full-strength seawater, fluctuations in salinity levels can undoubtedly induce stress and affect the immune response of this fish. Therefore, this study assessed the impact of salinity on vaccine efficacy in Nile tilapia, which used serum antibody level as a surrogate marker to detect vaccine efficacy. Nile tilapia were acclimatized to 0, 10, 20, or 30 ppt salinity, and then immunized with a formalin-inactivated Streptococcus agalactiae vaccine. Significantly lower levels of antibody in vaccinated fish were found at 20 and 30 ppt salinity compared to 0 and 10 ppt salinity. White blood cell counts, absolute blood lymphocyte counts, and serum bactericidal activity levels were all significantly lower in vaccinated fish at 20 and 30 ppt salinity. Elevated cortisol levels were detected in all of the fish exposure to salinity. Concentrations of serum electrolytes (Na+ and Cl-) were significantly higher in fish at 30 ppt salinity, as compared to fish at lower salinities. Furthermore, the mRNA transcription levels of three of the immune-related genes analyzed (IgM, IL-1ß, and IFN-γ, but not Hsp70) were significantly inhibited in the vaccinated fish at 20 and 30 ppt salinity. A suppressed immune response and decreased vaccine efficacy were also indicated by the lower survival rate of vaccinated fish at 20 ppt salinity when challenged with S. agalactiae. Therefore, salinities ≥20 ppt negatively affected antibody production in Nile tilapia, ultimately affecting vaccine efficacy.


Assuntos
Anticorpos Antibacterianos/sangue , Ciclídeos/imunologia , Doenças dos Peixes/prevenção & controle , Salinidade , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/uso terapêutico , Streptococcus agalactiae/imunologia , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Masculino , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Vacinação/veterinária
4.
Fish Shellfish Immunol ; 55: 737-46, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27327442

RESUMO

Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel vaccine against piscine S. agalactiae.


Assuntos
Proteínas de Bactérias/genética , Ciclídeos , Doenças dos Peixes/prevenção & controle , Proteoma/genética , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/genética , Streptococcus agalactiae/imunologia , Animais , Antígenos de Bactérias/genética , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...